PHYSICAL REVIEW E VOLUME 57, NUMBER 2 FEBRUARY 1998

Selection-mutation process of RNA viruses
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RNA viruses mutate at a rate 301 times faster than their DNA counterparts. This process can be
simulated by a continuous stochastic model on a smooth one-dimensional fitness landscape where selection
forces the viral quasispecies to climb uphill to higher fitness values. Theoretical results of the model with drift
velocity proportional to fitness are fitted to the experimental observations made by Neivall@Proc. Natl.

Acad. Sci. U.S.A92, 5841(1995]. [S1063-651X98)11802-0

PACS numbes): 87.10+e

RNA viruses such as influenza A, the human immunodeing of sequences averages the local peaks and valleys in
ficiency virus (HIV), and the vesicular stomatitis virus genome space into a smooth fitness landscape. The loss of
(VSV) are known to have unusually high mutation ratek local detail in the mode(existence of metastable statés
Rapid evolution and high replication rates allow these vi-compensated by the possibility of predicting robust trends.
ruses to evade a host’s acquired immunity to previous strains The evolution in fitness space is represented as a Markov
and form populations with high levels of polymorphism andprocess on a binary string of 1's and 0's of total length
varying degrees of fitneg&]. In viral replication, point mu- (the genome size The sum of 1's is directly proportional to
tations accumulate over time, creating new subtypes of théhe total fithess of the virus with no distinction made as to
same virus that can reinfect previously immune hosts. Thigshe location where the flips occur. It is found after neglecting
stochastic mutation process, known as genetic drift, alon@ drift velocity that, in the continuous limit, the fitness vari-
with the natural forces of selection, generates a distributiombler satisfies the equation
of mutants moving in a swarm with the attributes of a qua-
sispecied3,4]. Instead of a homogeneous population domi- IP(r,1) FP(r 1)
nated by the fastest replicating mutant, a quasispecies is =60(P—Pc)(r—(r)P(r,t)+D —=—, (2
characterized by an entire group of clones upon which selec- ar
tion operated5]. This group is adapted to evolve toward
local or global peaks on a multidimensional rugged fitnessvhereD is a diffusion constant proportional to the mutation
landscape. rate, ¢ the Heaviside step functioffr) the average fitness,

A typical RNA virus has a genome size consisting of overand P, an arbitrary lower threshold value that accounts for
10* nucleotide bases mutating at rates of about*0l0 °>  the discreteness of the replication process. Numerical simu-
mutations per nucleotide per replication. The sequence spadation of this model shows a pulselike distribution with two
for mutation, defined as the total volume in which all pos-stages of linear growth in approximate agreement with ex-
sible variations of the genome are represented, is extremelyeriment. To prevent divergence {n), the threshold value
large (about 4° %% state$ although only a small portion of P, is introduced. However, this assumption does not ensure
this space is available for drift evolutidi]. In recent ex- the proper convergence of the asymptotic state.
perimental studies of virus growth in cell culturgg, rela- In this paper, we study a continuous model derived from
tive fitness values of VSV clones were measured through an almost identical discrete formulation as in Ré&f. The
series of replication passages. Fitness was then quantified anly three differences are the followin¢g) we introduce a
the slope of the logarithm of the relative concentration of thescale factorA to connect flips in the binary string to changes
mutating clone to that of the wild-type virus. Results ob-in fitness(phenotype spage(b) we keep the drift velocity
tained from these experiments were fitted to the equation independent of the mutation rate as a meaningful variable to

ensure the convergence of statistical moments, (@have
r=A+Bt+Ce P (1) measure fitness as deviations from the most probable number
of 1's (3N) in a string of genome siz&l. We assign the
where r is the average fitness parameteelative growth  most probable statéero fitnessto clones that grow as fast
rate and A, B, C, and D are empirical parameters. The as the wild-type virug7].
variablet measures the number of replication passages usu- The continuous approximation is a partial differential
ally lasting 1 day. Relative fithess values were observed tequation with constant diffusion coefficient and variable drift
increase by as much as 4 units in 50 passages. velocity linearly dependent on fitness. The drift velocity can

A “mean field” model [8] for the evolution of a popula- be interpreted as the gradient of a quadratic potential fithess
tion along a one-dimensional fithess space was recently prdeinction. This smooth fitness landscape seems to be a rela-
posed to describe these experimental observations. Insteadtofely good approximation to the experiments on RNA evo-
assigning a fitness value to each genome sequence, thdion. The continuous limit can be solved to obtain equa-
model clusters different sequences with similar replicatiortions for the mean fitness and its variance. We show that if
rates into a probability density per unit fitness. This cluster-one starts with a symmetrical distribution of mutants, all cu-
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mulants beyond the second vanish. Finally, we fit the theowhere Zy(k,t) is the solution of Eq(7) without thek=0
retical predictions of the model to the experimental observaterm. To determine this function we solve the system of

tions of Novellaet al. [7]. equations

The evolution of mutants can be visualized as a one-
dimensional random walk in fithess spacwith step sizeA —dt _ dk _ —dz 9)
and time between stefs The probability to be ax at time 1 i—kn  —uki2

t, P(x=nA,t), obeys the following equation: ] ]
The general solution can be written as

1 x-— 2
P(X,t+ ) =(X=(x)){P(x,t)+| 5— —>P(X—A,t) _mTk KT 2y 2
2 NA Zy(k,t) > | %2 ox + o3 In(1+k“\9)
1 x+A 1
2T Na |PxFA. ©) + 3 arotarikn) |+ QL= In(i ~kn)],
Selection is incorporated in the terr(x))¢, which only (10

allows mutants with fitness values above the average to re  ereq) can be found by assuming the initial distributien
produce successfully. The constant transition probabilities i’ y 9

the last two terms account for mutation in a flat Iandscapé[.0 be a Gé‘uss'an fgr.‘Ct{ﬁn centzr.edi@wnh star;_dz:\jrd devia-
while the x-dependent terms describe the asymmetric hill- ion o Expressed in the coordinates 2§ we fin

climbing process along a fithess potential. The uphill climb Z (kO =2 In(2702) — ikxe— K252 11

of mutants forced by selection is counterbalanced by a higher o(k:0)=z In(2ma5) 0™ 28 90 (3
probability of falling back to lower fitness leve{deleterious The final expression faZ,(k,t) is rather long and we will
mutations especially at high values of, thereby preventing not write it. But once this function is found we can derive the

the average fitness from growing indefinitely. ~ first and second cumulants by taking derivativesZ¢k,t)
The constanN constrains the random walk to the limits ith respect tok:

—NA=<x=<NA. To obtain a continuous approximation we
subtractP(x,t) from Eq.(3) and divide the whole expression  (x(t))=idZ(k,t)|=o and o?(t)=i202Z(k,t)|=o.
by ¢. In the limit {—0, A—0, andN—, we find the con- (12
tinuous approximation
We quote the results. The average fitness
JP(x,t)

.

(X—(X)PD+NO(XP)+ = 2P (4) e M2ooh—2u+2x\%) +e M (u—209\)
2 <X(t)>_ 2)\2

with the mutationu and drift A coefficients defined by the (13
limits [9] reaches an asymptotic valde),.=u/2\? ast—o. Simi-
larly, the variance
2 2
——u and ———\. (5) ute M(20iN— )

¢ N¢ o?(t)= o (19

The above partial differential equation represents a diffusion ,
process with a drift velocity derived from a fitness potential@/SO reaches a constant _Vahnf3=_,u/2)\ ast—oo. By taking
Iax2. additional denvatlyes it is possible to shov_v that aI_I cumu-
We proceed to determine the average fitness and variand@ntsCn of order higher than two vanish. This result justifies
as functions of time. Equatio) is used to evaluate the time S€ttingC3=0 when the first two cumulants are calculated by

derivative of the cumulant generating functif] direct integration of Eq(4),
dx)
Z(k,H)=In Je*”‘XP(x,t)dx : (6) TR A
do?
After integration by parts we verify that satisfies the equa- a0 Cs+u—2No?. (15

tion
System(15) yields the same solutions as E¢$3) and (14).
IZ=10Z—19Z| o~ KNIZ— [t K2, 7) We now fit Eq.(13) to the experimental observations on
2 clones of monoclonal antibody-resistant muta(ARM )
of VSV [7]. These clones are progenies of virus particles
which can be solved by the method of characteristics. Thevith low initial fitness. Values for the initial conditions,
general solution is given as and ag, as well as the drift and mutation coefficients are
determined for each fitFigs. 3A), 3(B), and 3C) of Ref.
Z(k,t)=Zy(k,t)—Zo(k=04t), (8)  [7D. In all cases the mutation raje is found to be several
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FIG. 2. Using the best fit parameter values of Fig. 1 we plot the
2t - variance for each of the curves above. The one corresponding to
<X>1 Drift Model Fig. 1(B) has a higher scatter at large fitness values.
0 large fitness levels when the ratid\ is high.
The exponential fit(1) proposed for the experimental
-1 findings of VSV seems to work well for low to medium
0 10 20 Pas%%ge 40 %0 &0 fitness values. However, the fit does not seem to correctly
represent the virus fitness evolution at long tinfémess
defined as a rate cannot grow indefinijelglthough more
¢ Novella's Model data points are needed to make this point clear. The mean

field theory[8] previously presented also has similar behav-
ior with two stages of linear growth in fithess. Their constant
diffusion model with no drift term requires the inclusion of
P., a threshold value below which selection vanishes. With-
out this constraint, the average fitness will diverge in finite
time. A more recent papdi 1] redefines this model by in-
cluding a neighborhood two-point correlation between parent
and offspring. The more refined model correctly predicts the
asymptotic state foKx) without introducingP., but this
10 20 p@ge 90 0 80 asymptotic state also grows linearly in time.
The one-dimensional mean field model used here and in
Ref.[8] simulates in broad strokes the distribution of a qua-
FIG. 1. Data points taken from Fig. 3 of R§7). Curve fit using ?lspem?s als s_lt_arl].ectlt_)n moves the populat(;pfp to_ward hrllghﬁr
Eg. (13 yields the parameter values fdA) xo=—0.892, \ !tness evels. 1his plqture may requireé modi |ca_1t|ons.at '9
—0.0196, 1= 0.00294,02=0.100, and mean squared erfiSE) fitness values. The high scatter of d@f2] in this regime
of 0.0446, (B) Xo= —0.930, A\ =0.0754, u=0.0239, 7= 0.0750, may §|gnal the presence of variable sharp peaks and valleys
and MSE of 0.0291, and(C) x,=—0.803, A=0.0253, superlmposed to a_generally robust smoother landscape. 'I_'hls
=0.00381,02=0.101, and MSE of 0.0209. noisy background is one of the consequences of contracting
the high-dimensional sequence space into a one-dimensional
) ] o o fitness space.
times smaller than the drift coefficient By considering a The presence of drift suggests that deleterious mutations
smooth one-dimensional landscape we are confining OUsypressed at the phenotypic level are not only unavoidable
selves to a hill-climbing process of selection-mutation with-p, ;1 5150 necessary to stabilize virus populations. The reason
out metastable states. More data for longer times would bﬁ/hy a smooth fitness landscape may work at all can be

required to verify if this picture is valid in the experiments y5ceq to the knowledge that although the variability in se-
on VSV. Figure 1 displays the data of Noved#iaal,, their fit quence space is enormously large, only a limited number of

(1) and formula(13). Our curves slightly underestimate the mtations induces an adaptive advantage to the population
initial growth rate (for small samples, the initial Gaussian [13]. Further experimental study on virus evolution at longer

distributions are only an approximatipibut they seem t0 times would be necessary to determine how significant the
work well for the latter portion of the data. In Fig. 2 we plot it velocity is.

the three variances using the best fit parameters for the three

graphs above. In cas¢s) and(C) the variances decay toa  We wish to thank H. Levine and J. J. Holland for several
smaller steady state but in cag®) we observe a higher helpful comments. Partial support for this project was pro-
asymptotic value. A higher scatter of) values may occur at vided by the Clayton Fund, Inc.

Drift Model
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