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Selection-mutation process of RNA viruses

Amal Aafif and Juan Lin
Department of Physics, Washington College, Chestertown, Maryland 21620

~Received 1 August 1997!

RNA viruses mutate at a rate 105– 106 times faster than their DNA counterparts. This process can be
simulated by a continuous stochastic model on a smooth one-dimensional fitness landscape where selection
forces the viral quasispecies to climb uphill to higher fitness values. Theoretical results of the model with drift
velocity proportional to fitness are fitted to the experimental observations made by Novellaet al. @Proc. Natl.
Acad. Sci. U.S.A.92, 5841~1995!#. @S1063-651X~98!11802-0#

PACS number~s!: 87.10.1e
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RNA viruses such as influenza A, the human immuno
ficiency virus ~HIV !, and the vesicular stomatitis viru
~VSV! are known to have unusually high mutation rates@1#.
Rapid evolution and high replication rates allow these
ruses to evade a host’s acquired immunity to previous str
and form populations with high levels of polymorphism a
varying degrees of fitness@2#. In viral replication, point mu-
tations accumulate over time, creating new subtypes of
same virus that can reinfect previously immune hosts. T
stochastic mutation process, known as genetic drift, al
with the natural forces of selection, generates a distribu
of mutants moving in a swarm with the attributes of a qu
sispecies@3,4#. Instead of a homogeneous population dom
nated by the fastest replicating mutant, a quasispecie
characterized by an entire group of clones upon which se
tion operates@5#. This group is adapted to evolve towa
local or global peaks on a multidimensional rugged fitn
landscape.

A typical RNA virus has a genome size consisting of ov
104 nucleotide bases mutating at rates of about 1024– 1025

mutations per nucleotide per replication. The sequence s
for mutation, defined as the total volume in which all po
sible variations of the genome are represented, is extrem
large ~about 410 000 states! although only a small portion o
this space is available for drift evolution@6#. In recent ex-
perimental studies of virus growth in cell cultures@7#, rela-
tive fitness values of VSV clones were measured throug
series of replication passages. Fitness was then quantifie
the slope of the logarithm of the relative concentration of
mutating clone to that of the wild-type virus. Results o
tained from these experiments were fitted to the equatio

r 5A1Bt1Ce2Dt, ~1!

where r is the average fitness parameter~relative growth
rate! and A, B, C, and D are empirical parameters. Th
variablet measures the number of replication passages
ally lasting 1 day. Relative fitness values were observed
increase by as much as 4 units in 50 passages.

A ‘‘mean field’’ model @8# for the evolution of a popula-
tion along a one-dimensional fitness space was recently
posed to describe these experimental observations. Inste
assigning a fitness value to each genome sequence
model clusters different sequences with similar replicat
rates into a probability density per unit fitness. This clust
571063-651X/98/57~2!/2471~4!/$15.00
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ing of sequences averages the local peaks and valley
genome space into a smooth fitness landscape. The los
local detail in the model~existence of metastable states! is
compensated by the possibility of predicting robust trend

The evolution in fitness space is represented as a Mar
process on a binary string of 1’s and 0’s of total lengthN
~the genome size!. The sum of 1’s is directly proportional to
the total fitness of the virus with no distinction made as
the location where the flips occur. It is found after neglecti
a drift velocity that, in the continuous limit, the fitness va
able r satisfies the equation

]P~r ,t !

]t
5u~P2PC!~r 2^r &!P~r ,t !1D

]2P~r ,t !

]r 2 , ~2!

whereD is a diffusion constant proportional to the mutatio
rate,u the Heaviside step function,^r & the average fitness
and Pc an arbitrary lower threshold value that accounts
the discreteness of the replication process. Numerical si
lation of this model shows a pulselike distribution with tw
stages of linear growth in approximate agreement with
periment. To prevent divergence in^r &, the threshold value
Pc is introduced. However, this assumption does not ens
the proper convergence of the asymptotic state.

In this paper, we study a continuous model derived fro
an almost identical discrete formulation as in Ref.@8#. The
only three differences are the following:~a! we introduce a
scale factorD to connect flips in the binary string to chang
in fitness~phenotype space!, ~b! we keep the drift velocity
independent of the mutation rate as a meaningful variabl
ensure the convergence of statistical moments, and~c! we
measure fitness as deviations from the most probable num
of 1’s ( 1

2 N) in a string of genome sizeN. We assign the
most probable state~zero fitness! to clones that grow as fas
as the wild-type virus@7#.

The continuous approximation is a partial different
equation with constant diffusion coefficient and variable d
velocity linearly dependent on fitness. The drift velocity c
be interpreted as the gradient of a quadratic potential fitn
function. This smooth fitness landscape seems to be a
tively good approximation to the experiments on RNA ev
lution. The continuous limit can be solved to obtain equ
tions for the mean fitness and its variance. We show tha
one starts with a symmetrical distribution of mutants, all c
2471 © 1998 The American Physical Society
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mulants beyond the second vanish. Finally, we fit the th
retical predictions of the model to the experimental obser
tions of Novellaet al. @7#.

The evolution of mutants can be visualized as a o
dimensional random walk in fitness spacex with step sizeD
and time between stepsz. The probability to be atx at time
t, P(x5nD,t), obeys the following equation:

P~x,t1z!5~x2^x&!zP~x,t !1S 1

2
2

x2D

ND D P~x2D,t !

1S 1

2
1

x1D

ND D P~x1D,t !. ~3!

Selection is incorporated in the term (x2^x&)z, which only
allows mutants with fitness values above the average to
produce successfully. The constant transition probabilitie
the last two terms account for mutation in a flat landsca
while the x-dependent terms describe the asymmetric h
climbing process along a fitness potential. The uphill clim
of mutants forced by selection is counterbalanced by a hig
probability of falling back to lower fitness levels~deleterious
mutations! especially at high values ofx, thereby preventing
the average fitness from growing indefinitely.

The constantN constrains the random walk to the limi
2ND<x<ND. To obtain a continuous approximation w
subtractP(x,t) from Eq.~3! and divide the whole expressio
by z. In the limit z→0, D→0, andN→`, we find the con-
tinuous approximation

]P~x,t !

]t
5~x2^x&!P~x,t !1l]x~xP!1

m

2
]x

2P ~4!

with the mutationm and drift l coefficients defined by the
limits @9#

D2

z
→m and

2

Nz
→l. ~5!

The above partial differential equation represents a diffus
process with a drift velocity derived from a fitness potent
1
2 lx2.

We proceed to determine the average fitness and vari
as functions of time. Equation~4! is used to evaluate the tim
derivative of the cumulant generating function@10#

Z~k,t !5 lnS E e2 ikxP~x,t !dxD . ~6!

After integration by parts we verify thatZ satisfies the equa
tion

] tZ5 i ]kZ2 i ]kZuk502kl]kZ2
m

2
k2, ~7!

which can be solved by the method of characteristics. T
general solution is given as

Z~k,t !5Z0~k,t !2Z0~k50,t !, ~8!
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where Z0(k,t) is the solution of Eq.~7! without the k50
term. To determine this function we solve the system
equations

2dt

1
5

dk

i 2kl
5

2dz

2mk2/2
. ~9!

The general solution can be written as

Z0~k,t !5
m

2 F2 ik

l2 2
k2

2l
1

1

2l3 ln~11k2l2!

1
1

l3 arctan~kl!G1V@lt2 ln~ i 2kl!#,

~10!

whereV can be found by assuming the initial distributionP
to be a Gaussian function centered atx0 with standard devia-
tion s0 . Expressed in the coordinates ofZ0 we find

Z0~k,0!5 1
2 ln~2ps0

2!2 ikx02 1
2 k2s0

2. ~11!

The final expression forZ0(k,t) is rather long and we will
not write it. But once this function is found we can derive t
first and second cumulants by taking derivatives ofZ(k,t)
with respect tok:

^x~ t !&5 i ]kZ~k,t !uk50 and s2~ t !5 i 2]k
2Z~k,t !uk50 .

~12!

We quote the results. The average fitness

^x~ t !&5
m1e2lt~2s0

2l22m12x0l2!1e22lt~m22s0
2l!

2l2

~13!

reaches an asymptotic value^x&`5m/2l2 as t→`. Simi-
larly, the variance

s2~ t !5
m1e22lt~2s0

2l2m!

2l
~14!

also reaches a constant values`
2 5m/2l as t→`. By taking

additional derivatives it is possible to show that all cum
lantsCn of order higher than two vanish. This result justifie
settingC350 when the first two cumulants are calculated
direct integration of Eq.~4!,

d^x&
dt

5s22l^x&,

ds2

dt
5C31m22ls2. ~15!

System~15! yields the same solutions as Eqs.~13! and~14!.
We now fit Eq.~13! to the experimental observations o

clones of monoclonal antibody-resistant mutants~MARM !
of VSV @7#. These clones are progenies of virus partic
with low initial fitness. Values for the initial conditions,x0

and s0
2, as well as the drift and mutation coefficients a

determined for each fit~Figs. 3~A!, 3~B!, and 3~C! of Ref.
@7#!. In all cases the mutation ratem is found to be severa
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times smaller than the drift coefficientl. By considering a
smooth one-dimensional landscape we are confining
selves to a hill-climbing process of selection-mutation wi
out metastable states. More data for longer times would
required to verify if this picture is valid in the experimen
on VSV. Figure 1 displays the data of Novellaet al., their fit
~1! and formula~13!. Our curves slightly underestimate th
initial growth rate ~for small samples, the initial Gaussia
distributions are only an approximation! but they seem to
work well for the latter portion of the data. In Fig. 2 we pl
the three variances using the best fit parameters for the t
graphs above. In cases~A! and ~C! the variances decay to
smaller steady state but in case~B! we observe a highe
asymptotic value. A higher scatter of^x& values may occur a

FIG. 1. Data points taken from Fig. 3 of Ref.@7#. Curve fit using
Eq. ~13! yields the parameter values for~A! x0520.892, l
50.0196,m50.00294,s0

250.100, and mean squared error~MSE!
of 0.0446, ~B! x0520.930, l50.0754,m50.0239,s0

250.0750,
and MSE of 0.0291, and~C! x0520.803, l50.0253, m
50.00381,s0

250.101, and MSE of 0.0209.
r-
-
e

ee

large fitness levels when the ratiom/l is high.
The exponential fit~1! proposed for the experimenta

findings of VSV seems to work well for low to medium
fitness values. However, the fit does not seem to corre
represent the virus fitness evolution at long times~fitness
defined as a rate cannot grow indefinitely!, although more
data points are needed to make this point clear. The m
field theory@8# previously presented also has similar beha
ior with two stages of linear growth in fitness. Their consta
diffusion model with no drift term requires the inclusion o
Pc , a threshold value below which selection vanishes. W
out this constraint, the average fitness will diverge in fin
time. A more recent paper@11# redefines this model by in
cluding a neighborhood two-point correlation between par
and offspring. The more refined model correctly predicts
asymptotic state for̂ x& without introducingPc , but this
asymptotic state also grows linearly in time.

The one-dimensional mean field model used here an
Ref. @8# simulates in broad strokes the distribution of a qu
sispecies as selection moves the population toward hig
fitness levels. This picture may require modifications at h
fitness values. The high scatter of data@12# in this regime
may signal the presence of variable sharp peaks and va
superimposed to a generally robust smoother landscape.
noisy background is one of the consequences of contrac
the high-dimensional sequence space into a one-dimens
fitness space.

The presence of drift suggests that deleterious mutat
expressed at the phenotypic level are not only unavoida
but also necessary to stabilize virus populations. The rea
why a smooth fitness landscape may work at all can
traced to the knowledge that although the variability in s
quence space is enormously large, only a limited numbe
mutations induces an adaptive advantage to the popula
@13#. Further experimental study on virus evolution at long
times would be necessary to determine how significant
drift velocity is.

We wish to thank H. Levine and J. J. Holland for seve
helpful comments. Partial support for this project was p
vided by the Clayton Fund, Inc.

FIG. 2. Using the best fit parameter values of Fig. 1 we plot
variance for each of the curves above. The one correspondin
Fig. 1~B! has a higher scatter at large fitness values.
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